
Perossido di idrogeno (H₂O₂) Scheda Analitica

DOTT. EUGENIO FELICIONI

eugenio.felicioni@studenti.unicam.it

Master degree – Molecular and Medical Biotechnology (in corso)

Il perossido di idrogeno (H_2O_2) è un composto inorganico presente in natura principalmente sotto forma di liquido o gas. É una delle molecole facenti parte di diversi processi biologici, tra cui il metabolismo e la respirazione cellulare. Nella sua forma pura, è di un colore azzurro molto pallido, limpido, e leggermente più viscoso dell'acqua, con un punto di ebollizione di $150,2^{\circ}$ C. **É il tipo di perossido più semplice, usato come ossidante, agente sbiancante e antisettico**. Il perossido di idrogeno concentrato, o "perossido ad alto test", è una specie reattiva dell'ossigeno che può diverse applicazioni. Esso è Instabile, si decompone lentamente in presenza di luce e a causa della sua instabilità, viene generalmente conservato con uno stabilizzatore in una soluzione debolmente acida, in una bottiglia di colore scuro.

Perossido nelle cellule

Il perossido di idrogeno si forma nell'uomo e in altri animali come prodotto di breve durata nei processi biochimici **ed è tossico per le cellule.** La tossicità è dovuta al suo potere ossidante nelle proteine, nei lipidi di membrana e nel DNA da parte degli ioni perossido. La classe di enzimi biologici delle *dismutasi* (SOD) è sviluppata in quasi tutte le cellule viventi come un importante agente antiossidante. Promuovono il decadimento dei superossidi (O⁻2) in ossigeno e perossido di idrogeno (H₂O₂), che viene quindi rapidamente decomposto dall'enzima *catalasi* in ossigeno e acqua:

Dismutasi (SOD) ->
$$2 O_{2}^{-} + 2 H^{+} \rightarrow H_{2}O_{2} + O_{2}$$

Catalasi -> $H_2O_2 \rightarrow \frac{1}{2}O_2 + H_2O$

Nelle cellule eucariotiche (animali e vegetali), il perossido d'idrogeno sarebbe tossico se libero nel citoplasma; questo però non succede perché ci sono degli organelli chiamati perossisomi. Essi sono coinvolti nel catabolismo di acidi grassi a catena molto lunga, di acidi grassi a catena ramificata, di D-aminoacidi, poliammine, e biosintesi di plasmalogeni, fosfolipidi eterei fondamentali per il corretto funzionamento dei cervelli e dei polmoni dei mammiferi.

Uno degli enzimi presenti nei *perossisomi* è la *catalasi*, che usa H₂O₂ per ossidare altri substrati, inclusi fenoli, acido formico, formaldeide e alcool, e allo stesso tempo per smaltire il perossido dalla cellula.

Nelle piante ad esempio essa è un'importante molecola segnalatrice coinvolta nell'attivazione delle difese contro i patogeni. Nelle cellule procariotiche (batteri), le <u>catalasi</u> sono presenti nel citoplasma e performano l'azione di neutralizzazione senza la necessità di organelli.

Utilizzo come disinfettante

Il perossido di idrogeno può essere usato per la sterilizzazione di varie superfici, compresi strumenti chirurgici, e può essere impiegato come vapore (VHP) per la sterilizzazione di diversi locali. H₂O₂ dimostra efficacia ad ampio spettro contro virus, batteri, lieviti e spore batteriche. In generale, si osserva una maggiore attività contro i batteri Gram-positivi rispetto ai batteri Gram-negativi; una bassa concentrazione molare (3%) funziona contro la maggior parte delle spore; concentrazioni più elevate (dal 7 al 30%) e tempi di contatto più lunghi migliorano l'attività sporicida [1].

Il perossido di idrogeno è considerato un'alternativa ecologicamente sicura alle candeggine a base di cloro, poiché si degrada per formare ossigeno e acqua ed è generalmente riconosciuto sicuro come agente antimicrobico dalla Food and Drug Administration (FDA) degli Stati Uniti [2].

Caratteristiche tecniche sulla disinfezione

Un perossido di idrogeno accelerato allo 0,5% (AHP®)⁽¹⁾ ha dimostrato attività battericida e virucida in 1 minuto e attività micobattericida e fungicida in 5 minuti. Le concentrazioni di perossido di idrogeno dal 6% al 25% mostrano risultati promettenti come sterilizzanti chimici. Il prodotto commercializzato come sterilizzante è un prodotto chimico premiscelato pronto all'uso che contiene il 7,5% di perossido di idrogeno e lo 0,85% di acido fosforico (per mantenere un basso pH). L'efficacia battericida e la stabilità del perossido di idrogeno sono state dimostrate contro una varietà di agenti patogeni associati all'assistenza sanitaria, nello specifico:

- Gli organismi con attività di catalasi superiore/alta (ad esempio, S. aureus, S. marcescens e Proteus mirabilis) hanno richiesto 30–60 minuti di esposizione al perossido di idrogeno accelerato allo 0,6% risultando in una riduzione di 108 del conteggio delle cellule.
- Gli organismi con attività di catalasi inferiore/bassa (ad esempio, E. coli, Streptococcus spp. e Pseudomonas spp.) hanno richiesto un'esposizione di soli 15 minuti.
- In un'indagine eseguita con 3%, 10% e 15% di perossido di idrogeno per ridurre le popolazioni batteriche di veicoli spaziali, una disinfezione completa di 10° spore di Bacillus spp. e di 10³ spore di B. atrophaeus si è verificata con una concentrazione del 10% e un tempo di esposizione di 60 minuti, così come una riduzione ≥10⁵ quando testato contro

altri 13 agenti patogeni in 30 minuti a 20 ° C. In concentrazione al 3% per 150 minuti di esposizione ha eliminato 10⁶ spore in sei delle sette prove effettuate.

- Una soluzione di perossido di idrogeno al 3% è invece *risultata inefficace contro VRE* (Enterococcus) dopo 3 e 10 minuti di tempo di esposizione, causando solo una riduzione di 2-log₁₀ del numero di cisti di *Acanthamoeba* in circa 2 ore.
- Una soluzione perossido di idrogeno stabilizzato al 7% si è rivelata sporicida (6 ore di esposizione), micobattericida (20 minuti), fungicida (5 minuti) a piena efficacia, virucida (5 minuti) e battericida (3 minuti). La soluzione al 7% di perossido di idrogeno, testata dopo 14 giorni di stress (con cioè formazione di biofilm batterici), è risultata sporicida (riduzione > 7-log₁₀ in 6 ore), micobattericida (riduzione > 6.5 log₁₀ in 25 minuti), fungicida (riduzione > 5 log₁₀ in 20 minuti), battericida (riduzione > 6 log₁₀ in 5 minuti) e virucida (riduzione di 5 log₁₀ in 5 minuti).
- Eventuali studi hanno dimostrato *l'attività virucida del perossido di idrogeno contro il Rhinovirus*; il tempo necessario per inattivare tre sierotipi di <u>Rhinovirus</u> usando una soluzione di perossido di idrogeno al 3% è risultata di 6-8 minuti, quest'ultimo poi è aumentato con concentrazioni di H₂O₂ decrescenti (18-20 minuti all'1,5%, 50–60 minuti allo 0,75%), rimanendo pur sempre efficace.
- L'attività micobattericida del perossido di idrogeno al 7,5% è stata confermata in uno studio che ha mostrato l'inattivazione di >10⁵ *M. Tubercolosis* multi-farmaco resistente dopo un'esposizione di 10 minuti, mentre sono stati necessari 30 minuti per l'inattivazione di >99,9% di poliovirus e HAV (Epatite A).
- Quando l'efficacia del perossido di idrogeno al 7,5% a 10 minuti è stata confrontata con la glutaraldeide alcalina al 2% a 20 minuti nella disinfezione manuale degli endoscopi, non è stata osservata alcuna differenza significativa nell'attività germicida (eccetto, la differenza nella tossicità del prodotto, in quanto il perossido ha presentato zero tossicità comparato all'aldeide).
- Una nuova formulazione di perossido di idrogeno al 13,4% ad azione rapida (che non è ancora stata autorizzata dalla FDA) ha dimostrato efficacia sporicida, micobattericida, fungicida e virucida. I dati del produttore dimostrano che questa soluzione sterilizza in 30 minuti e fornisce una disinfezione di alto livello in 5 minuti. Questo prodotto non è stato utilizzato abbastanza a lungo per valutare la compatibilità dei materiali con endoscopi e altri dispositivi semi-critici ed è necessaria un'ulteriore valutazione da parte dei produttori di strumenti.

(1) AHP® è una miscela sinergica brevettata di ingredienti comunemente usati e sicuri che, se combinata con bassi livelli di perossido di idrogeno, aumenta notevolmente la sua potenza germicida e le prestazioni di pulizia. È composto da perossido di idrogeno, agenti ad azione superficiale (tensioattivi), wetting agents (una sostanza che riduce la tensione superficiale di un liquido, facendo sì che il liquido si diffonda o penetri più facilmente sulla superficie di un solido) e agenti chelanti (a sostanza che aiuta a ridurre il contenuto di metallo e / o la durezza dell'acqua). Gli ingredienti sono tutti elencati negli elenchi EPA e Health Canada Inerts e nella FDA Generally Considered as Safe List (GRAS). Tutti i prodotti chimici utilizzati nella formulazione di AHP® si trovano comunemente in detergenti e disinfettanti commerciali e industriali.

Norme di Sicurezza

Le normative variano, **ma le basse concentrazioni, come il 6%, sono ampiamente disponibili e legali per l'acquisto per fini medici.** La maggior parte delle soluzioni di perossido da banco non sono adatte per l'ingestione. Concentrazioni più elevate possono essere considerate pericolose e in genere sono accompagnate da una scheda di sicurezza (SDS). Ad alte concentrazioni, il perossido è un ossidante aggressivo e corrode molti materiali, inclusa la pelle umana. In presenza di un agente riducente, alte concentrazioni di H₂O₂ reagiscono facilmente e violentemente. Scendendo ulteriormente nello specifico:

- I flussi di perossido di idrogeno ad alta concentrazione, in genere superiori al 40%, dovrebbero essere considerati pericolosi a causa della concentrazione in questione che soddisfa la definizione di ossidante DOT secondo le normative statunitensi, se rilasciato nell'ambiente. La quantità ripetibile EPA (RQ) per i rifiuti pericolosi D001 è di 45 kg (100 libbre), o circa 10 litri galloni (38 L).
- Il perossido di idrogeno deve essere conservato in un'area fresca, asciutta e ben ventilata, lontano da qualsiasi sostanza infiammabile o combustibile. Dovrebbe inoltre essere conservato in un contenitore composto da materiali non reattivi come acciaio inossidabile o vetro. Quando esposto alla luce, dovrebbe essere conservato in un contenitore opaco, per questo motivo le formulazioni farmaceutiche in genere vengono fornite in flaconi marroni.
- Il perossido di idrogeno, sia in forma pura che diluita, può presentare diversi rischi, il principale è che forma miscele esplosive al contatto con composti organici. Esso, se altamente concentrato è instabile e può causare l'esplosione del vapore in espansione del liquido bollente (BLEVE) del liquido rimanente. Di conseguenza, la distillazione del perossido di idrogeno a pressioni normali è altamente pericolosa. Ancora, risulta corrosivo specialmente se concentrato. Per quanto riguarda l'ingestione, essa è particolarmente pericolosa poiché la decomposizione nello stomaco rilascia grandi quantità di gas (dieci volte il volume di una soluzione al 3%), causando gonfiore interno. L'inalazione di oltre il 10% può causare gravi irritazioni polmonari.

Con una pressione di vapore significativa (1,2 kPa a 50 °C), il vapore di perossido di idrogeno è potenzialmente pericoloso. Secondo gli Stati Uniti NIOSH, il limite immediatamente pericoloso per la vita e la salute (IDLH) è di soli 75 ppm. L'amministrazione statunitense per la sicurezza e la salute sul lavoro (OSHA) ha stabilito di conseguenza un limite di esposizione consentito di 1,0 ppm calcolato come media ponderata nel tempo di 8 ore. Il perossido è stato anche classificato dalla American Conference of Governmental Industrial Hygienists (ACGIH) come "noto cancerogeno animale, con rilevanza sconosciuta sull'uomo". Per i luoghi di lavoro in cui esiste il rischio di esposizione alle concentrazioni pericolose dei vapori, è necessario utilizzare monitor continui.

Altre informazioni sui pericoli del perossido di idrogeno sono disponibili presso OSHA e ATSDR.

Sitografia

[1] https://www.cdc.gov/infectioncontrol/guidelines/disinfection/disinfection-methods/chemical.html#Hydrogen . www.cdc.gov. 4 April 2019. Retrieved 12 April 2020.

[2]https://web.archive.org/web/20070703092508/http://a257.g.akamaitech.net/7/257/2422/04nov20031500/edock et.access.gpo.gov/cfr_2001/aprqtr/21cfr184.1366.htm . U.S. Government Printing Office via GPO Access. 1 April 2001. Archived from the original on 3 July 2007. Retrieved 7 July 2007.